Google的技术孵化器Jigsaw发布了一个名为Assembler的实验平台,以帮助记者和前线事实检查人员快速验证图像。
工作原理:
Assembler结合了学术界现有的几种技术来检测常见的操纵技术,包括更改图像亮度和将复制的像素粘贴到其他地方以掩盖某些东西,同时保留相同的视觉纹理。它还包括一个检测器,该检测器可以发现使用StyleGAN创建的深层伪造品,StyleGAN是一种可以生成逼真的假想面孔的算法。这些检测技术会输入到主模型中,该模型会告诉用户图像被操纵的可能性有多大。
为何重要:
伪造图像是更难验证的事情,尤其是随着人工智能操纵的兴起。随着信息的传播速度和规模的扩大,新闻记者和事实检查者作出反应的机会窗口也在迅速缩小。
并非万能药:
汇编程序是与受控媒体作斗争的重要一步,但它并未涵盖许多其他现有的操纵技术,包括用于视频的操纵技术,随着生态系统的不断发展,团队需要对其进行补充和更新。它仍然作为与通常分发篡改图像的渠道分开的平台而存在。专家建议,像Facebook和Google这样的技术巨头将这些类型的检测功能直接整合到其平台中。这样,可以在上传和共享照片和视频时几乎实时地执行此类检查。
也有其他方法可以考虑。例如,一些初创公司正在采用验证技术,该技术可以在拍摄照片时记住照片中像素的位置,但这也带来了挑战。
超越技术:
最终,技术修复还远远不够。数字伪造最棘手的方面之一并不是伪造图像本身。而是它们存在的想法,可以很容易地调用它们来质疑真实媒体的准确性。这是挑战的类型,也将需要社会和政策解决方案。