初中生学习数学要注意知识点公式的总结,下面为大家总结了初一到初三数学公式,仅供大家参考。
平方根计算公式根号内的数可以化成相同或相同则可以相加减,不同不能相加减。
如果根号里面的数相同就可以相加减,如果根号里面的数不相同就不可以相加减,能够化简到根号里面的数相同就可以相加减了。
举例如下:
(1)2√2+3√2=5√2(根号里面的数都是2,可以相加)
(2)2√3+3√2(根号里面的数一个是3,一个是2,不同不能相加)
(3)√5+√20=√5+2√5=3√5(根号内的数虽然不同,但是可以化成相同,可以相加)
(4)3√2-2√2=√2
(5)√20-√5=2√5-√5=√5
根号的乘除法:
√ab=√a·√b﹙a≥0b≥0﹚,如:√8=√4·√2=2√2
√a/b=√a÷√b
三角函数公式两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
和差化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
解方程必背公式乘法与因式分解:
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
一元二次方程的解:
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
三角不等式:
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
扇形面积公式是什么扇形面积公式是S扇=(lR)/2(l为扇形弧长,R为半径)=(1/2)θR²(θ为以弧度表示的圆心角)。
设一扇形的半径为r,弧长为l,面积为S,则S=1/2lR,
若命扇形的顶角(扇形的弧所对的圆心角,叫做扇形的顶角)为a,那么
S=π/360ar2……(1)
S=π/400ar2……(2)
S=1/2ar2……(3)
其中(1)式适用于六十分制,(2)式适用于百分制,(3)式适用于径制(弧度制)。
勾股定理公式基本公式
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a2+b2=c2。
完全公式
a=m,b=(m^2/k-k)/2,c=(m^2/k+k)/2①
其中m≥3
(1)当m确定为任意一个≥3的奇数时,k={1,m^2的所有小于m的因子}
(2)当m确定为任意一个≥4的偶数时,k={m^2/2的所有小于m的偶数因子}
常用公式
(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。
(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2n+1(n是正整数)。
(3)(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)。
(4)m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)。
感谢阅读,以上就是初一到初三数学公式总结的相关内容。希翼为大家整理的这篇初一到初三数学公式总结内容能够解决你的困惑。