三角形其中一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。接下来分享角平分线性质定理及证明方法。
角平分线的性质定理1.角平分线可以得到两个相等的角。
2.角平分线上的点到角两边的距离相等。
3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。
4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。
证明方法1.角平分线线上的点到角两边的距离相等。
若射线AD是∠CAB的角平分线,求证:CD=BD
∵∠DCA=∠DBA
∠CAD=∠BAD
AD=AD
∴△ACD≌△ABD
∴CD=BD
2.三角形内角平分线分对边所成的两条线段,和两条邻边成比例
在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC。
证明:
如图,AD为△ABC的角平分线,过点D向边AB,AC分别引垂线DE,DF.则DE=DF。
S△ABD:S△ACD=BD/CD
又因为S△ABD:S△ACD=[(1/2)AB×DE]:[(1/2)AC×DF]=AB:AC
所以BD/CD=AB/AC。
感谢阅读,以上就是角平分线性质定理及证明方法的相关内容。希翼为大家整理的这篇角平分线性质定理及证明方法内容能够解决你的困惑。