是。证明过程如下:设f(x),g(x)均为奇函数,则f(-x)=-f(x),g(-x)=-g(x),因为f(-x)·g(-x)=[-f(x)]·[-g(x)]=f(x)·g(x),所以f(x)·g(x)为偶函数。
奇函数性质如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
1.奇函数图象关于原点对称;
2.如果奇函数在x=0上有定义,那么有f(0)=0;
3.满足f(-x)=-f(x);
4.关于原点对称的区间上单调性保持一致;
5.定义域关于原点对称。(奇偶函数共有)
偶函数性质如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
1.偶函数图象关于y轴对称;
2.满足f(-x)=f(x);
3.关于原点对称的区间上单调性相反;
4.如果一个函数既是奇函数又是偶函数,那么有f(x)=0;
5.定义域关于原点对称。(奇偶函数共有)
感谢阅读,以上就是两个奇函数的乘积是偶函数吗的相关内容。希翼为大家整理的这篇两个奇函数的乘积是偶函数吗内容能够解决你的困惑。