您的位置:首页>综合动态>

中学知识:三角函数化简公式推导

三角函数化简公式是对复杂的三角函数进行简化,使三角函数变为简单的。下面小编整理了三角函数化简公式推导,供大家参考。

三角函数化简公式推导

三角函数化简公式

三角函数和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数积化和差公式

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

半角公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

倍角公式

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三角函数万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

两角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

三角函数化简技巧

1、统一名:其中包含齐次化切,以及切化弦。

2、统一角:单角转倍角,倍角转单角。

3、降幂:但不能违背统一角的原则。

4、遇到特别角拆。

5、边转角,角转变。

6、归一原则。

7、配角原则。

三角函数化简公式的推导

设tan(A/2)=t

sinA=2t/(1+t^2)

tanA=2t/(1-t^2)

cosA=(1-t^2)/(1+t^2)

推导第一个:(其它类似)

sinA=2sin(A/2)cos(A/2)

=[2sin(A/2)cos(A/2)]/[sin^2(A/2)+cos^2(A/2)]

分子分母同时除以cos^2(A/2)

=[2sin(A/2)cos(A/2)/cos^2(A/2)]/[(sin^2(A/2)+cos^2(A/2))/cos^2(A/2)]

化简:

=[2sin(A/2)/cos(A/2)]/[sin^2(A/2)/cos^2(A/2)+1]

即:

=(2tan(A/2))/(tan^(A/2)+1)

感谢阅读,以上就是三角函数化简公式推导的相关内容。希翼为大家整理的这篇三角函数化简公式推导内容能够解决你的困惑。

免责声明:本文由用户上传,如有侵权请联系删除!