在数学中,无理数是所有不是有理数字的实数,无理数,也称为无限不循环小数,不能写作两整数之比。
无理数的概念无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
有理数和无理数的区别(1)性质区别:
有理数是两个整数的比,总能写成整数、有限小数或无限循环小数;无理数不能写成两个整数之比,是无限不循环小数。
(2)结构区别:
有理数是整数和分数的统称;无理数是所有不是有理数的实数。
(3)范围区别:
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行;无理数是指实数范围内不能表示成两个整数之比的数。
无理数集及其他数集的符号无理数集相当于实数集中有理数集的补集,实数集R,有理数集Q,所以无理数集合符号为CrQ。
所有正整数组成的集合称为正整数集,记作N*,Z+或N+。
所有负整数组成的集合称为负整数集,记作Z-。
全体虚数组成的集合称为虚数集,记作I。
全体实数和虚数组成的复数的集合称为复数集,记作C。
感谢阅读,以上就是无理数的概念是什么的相关内容。希翼为大家整理的这篇无理数的概念是什么内容能够解决你的困惑。