在学习三角函数的过程中,我们都知道三角函数有积化和差公式,那么,三角函数积化和差公式及推导步骤是什么呢?下面和小编一起来看看吧!
三角函数积化和差公式有哪些积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
三角函数积化和差公式推导过程推导过程一:
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sin αcos β+cos αsin β,
sin(α-β)=sin αcos β-cos αsin β,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sin αcos β,
设 α+β=θ,α-β=φ
那么
α=(θ+φ)/2,β=(θ-φ)/2
把α,β的值代入,即得
sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
推导过程二:
根据欧拉公式,e ^Ix=cosx+isinx
令x=a+b
得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)
所以cos(a+b)=cosacosb-sinasinb
sin(a+b)=sinacosb+sinbcosa
如果觉得以上内容不够详细,可以点击查看三角函数公式相关文章,了解更多!
感谢阅读,以上就是三角函数积化和差公式及推导步骤的相关内容。希翼为大家整理的这篇三角函数积化和差公式及推导步骤内容能够解决你的困惑。