您的位置:首页>大学生活>

中学知识:三角函数积化和差公式及推导步骤

在学习三角函数的过程中,我们都知道三角函数有积化和差公式,那么,三角函数积化和差公式及推导步骤是什么呢?下面和小编一起来看看吧!

三角函数积化和差公式有哪些

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数积化和差公式推导过程

推导过程一:

sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程

因为

sin(α+β)=sin αcos β+cos αsin β,

sin(α-β)=sin αcos β-cos αsin β,

将以上两式的左右两边分别相加,得

sin(α+β)+sin(α-β)=2sin αcos β,

设 α+β=θ,α-β=φ

那么

α=(θ+φ)/2,β=(θ-φ)/2

把α,β的值代入,即得

sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

推导过程二:

根据欧拉公式,e ^Ix=cosx+isinx

令x=a+b

得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)

所以cos(a+b)=cosacosb-sinasinb

sin(a+b)=sinacosb+sinbcosa

如果觉得以上内容不够详细,可以点击查看三角函数公式相关文章,了解更多!

感谢阅读,以上就是三角函数积化和差公式及推导步骤的相关内容。希翼为大家整理的这篇三角函数积化和差公式及推导步骤内容能够解决你的困惑。

免责声明:本文由用户上传,如有侵权请联系删除!