初中数学解方程是很多人都比较重视的,下面小编就整理了,供大家参考。
乘法与因式分解:
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式:
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解:
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1*X2=c/a注:韦达定理
判别式b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
两角和公式:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式:
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式:
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积:
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和:
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程:(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程:x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程:y2=2px
y2=-2px
x2=2py
x2=-2py
直棱柱侧面积:S=c*h
斜棱柱侧面积:S=c'*h
正棱锥侧面积:S=1/2c*h'
正棱台侧面积:S=1/2(c+c')h'
圆台侧面积:S=1/2(c+c')l=pi(R+r)l
球的表面积:S=4pi*r2
圆柱侧面积:S=c*h=2pi*h
圆锥侧面积:S=1/2*c*l=pi*r*l
弧长公式:l=a*r,a是圆心角的弧度数r>0
扇形面积公式:s=1/2*l*r
锥体体积公式:V=1/3*S*H
圆锥体体积公式:V=1/3*pi*r2h
斜棱柱体积:V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式:V=s*h
圆柱体:V=pi*r2h
感谢阅读,以上就是初中数学解方程必背公式汇总的相关内容。希翼为大家整理的这篇初中数学解方程必背公式汇总内容能够解决你的困惑。