您的位置:首页>大学生活>

中学知识:全等三角形的判定与性质

经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。

全等三角形的判定

全等三角形判定

SSS(边边边):三边对应相等的三角形是全等三角形。

SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。

ASA(角边角):两角及其夹边对应相等的三角形全等。

AAS(角角边):两角及其一角的对边对应相等的三角形全等。

RHS(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。(它的证明是用SSS原理)

下列两种方法不能验证为全等三角形:

AAA(角角角):三角相等,不能证全等,但能证相似三角形。

SSA(边边角):其中一角相等,且非夹角的两边相等。

全等三角形性质

1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3.能够完全重合的顶点叫对应顶点。

4.全等三角形的对应边上的高对应相等。

5.全等三角形的对应角的角平分线相等。

6.全等三角形的对应边上的中线相等。

7.全等三角形面积和周长相等。

8.全等三角形的对应角的三角函数值相等。

三角形

三角形是由同一平面内不在同向来线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建造学有应用。

常见的三角形按边分有一般 三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

三角形的应用

1、自行车架

自行车架根据用途分类可以分为停放自行车架与汽车自行车架。

2、篮球架

篮球架是篮球场地的必需设备。篮球运动器材。包括篮板和篮板支柱,架设在篮球场两端的中央。目前使用的有液压式、移动式、固定式、吊式、海燕式、炮式等等。

3、相机三脚架

三脚架是用来稳定照相机,以达到某些摄影效果,三脚架的定位非常重要。三脚架按照材质分类可以分为木质、高强塑料材质,合金材料、钢铁材料、火山石、碳纤维等多种。

感谢阅读,以上就是全等三角形的判定与性质的相关内容。希翼为大家整理的这篇全等三角形的判定与性质内容能够解决你的困惑。

免责声明:本文由用户上传,如有侵权请联系删除!