您的位置:首页>大学生活>

中学知识:因式分解十字相乘法

因式分解十字相乘法口诀:首尾分解,交叉相乘,求和凑中。十字分解法能把某些二次三项式分解因式。

因式分解十字相乘法

十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。

十字分解法能把某些二次三项式分解因式。对于形如ax²+bx+c=(a₁x+c₁)(a₂x+c₂)的整式来说,方法的关键是把二次项系数a分解成两个因数a₁,a₂的积a₁·a₂,把常数项c分解成两个因数c₁,c₂的积c₁·c₂,并使a₁c₂+a₂c₁正好等于一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。在运用这种方法分解因式时,要注意观察,尝试,并体味,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。

感谢阅读,以上就是因式分解十字相乘法的相关内容。希翼为大家整理的这篇因式分解十字相乘法内容能够解决你的困惑。

免责声明:本文由用户上传,如有侵权请联系删除!