您的位置:首页>大学生活>

教育资讯:复数乘法的几何意义

复数在极坐标中可以用模(绝对值)和辐角(向量的角度)来表示,两个复数的乘积为:模等于两个复数模的乘积,辐角等于两个复数的辐角之和。复数是形如z=a+bi(a、b均为实数)的数。

复数乘法的几何意义

什么是复数

我们把形如z=a+bi(a、b均为实数)的数称为复数。其中,a称为实部,b称为虚部,i称为虚数单位。当z的虚部b=0时,则z为实数;当z的虚部b≠0时,实部a=0时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。

复数的乘法法则

复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。

来源:高三网

能发现自己知识上的薄弱环节,在上课前补上这部分的知识,不使它成为听课时的“绊脚石”。这样,就会顺利理解新知识,相信通过复数乘法的几何意义这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。

免责声明:本文由用户上传,如有侵权请联系删除!