切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。下面是相关内容,欢迎大家查阅。
高中数学抛物线切线方程1、已知切点Q(x0,y0),若y²=2px,则切线y0y=p(x0+x);若x²=2py,则切线x0x=p(y0+y)等。
2、已知切点Q(x0,y0)
若y²=2px,则切线y0y=p(x0+x)。
若x²=2py,则切线x0x=p(y0+y)。
3、已知切线斜率k
若y²=2px,则切线y=kx+p/(2k)。
若x²=2py,则切线x=y/k+pk/2(y=kx-pk²/2)。
相关性质1、过抛物线焦弦两端的切线的交点在抛物线的准线上。
2、过抛物线焦弦两端的切线互相垂直。
3、以抛物线焦弦为直径的圆与抛物线的准线相切。
4、过抛物线焦弦两端的切线的交点与抛物线的焦点的连线和焦点弦互相垂直。
5、过焦弦两端的切线的交点与焦弦中点的连线,被抛物线所平分。
来源:高三网
能发现自己知识上的薄弱环节,在上课前补上这部分的知识,不使它成为听课时的“绊脚石”。这样,就会顺利理解新知识,相信通过高中数学抛物线切线方程怎么求 方法是什么这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。