余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理的表达式余弦定理的推导过程1、平面三角形证法
在△ABC中,BC=a,AC=b,AB=c,作AD⊥BC于D,则AD=c*sinB,DC=a-BD=a-c*cosB
在Rt△ACD中,
b²=AD²+DC²=(c*sinB)²+(a-c*cosB)²
=c²sin²B+a²-2ac*cosB+c²cos²B
=c²(sin²B+cos²B)+a²-2ac*cosB
=c²+a²-2ac*cosB
2、平面向量证法
有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)
∴c·c=(a+b)·(a+b)
∴c²=a·a+2a·b+b·b∴c²=a²+b²+2|a||b|cos(π-θ)
又∵cos(π-θ)=-cosθ(诱导公式)
∴c²=a²+b²-2|a||b|cosθ
此即c²=a²+b²-2abcosC
即cosC=(a2+b2-c2)/2*a*b
来源:高三网
能发现自己知识上的薄弱环节,在上课前补上这部分的知识,不使它成为听课时的“绊脚石”。这样,就会顺利理解新知识,相信通过余弦定理的表达式是什么 公式及推导过程这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。