您的位置:首页>教育问答>

奇函数的倒数(奇函数的性质)

大家好,小高来为大家解答以上问题。奇函数的倒数,奇函数的性质很多人还不知道,现在让我们一起来看看吧!

一、 奇函数

二、定义

一般的,如果对于函数f(x)的定义域内任意一个x,都有f(-x) = - f(x),那么函数f(x)就叫做奇函数。

三、判断方法

S1先求定义域,判断定义域是否关于原点对称;

S2当S1成立时,判断f(-x)与-f(x)是否相等;

若相等则函数是奇函数,若不相等则不是奇函数。

判断奇函数先看定义域,后验证关系式。

四、 奇偶函数的性质

五、奇函数性质

1、图象关于原点对称

2、满足f(-x) = - f(x)

3、关于原点对称的区间上单调性一致

4、如果奇函数在x=0上有定义,那么有f(0)=0

5、定义域关于原点对称(奇偶函数共有的)

六、偶函数性质

1、图象关于y轴对称

2、满足f(-x) = f(x)

3、关于原点对称的区间上单调性相反

4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

5、定义域关于原点对称(奇偶函数共有的)

七、 常用运算规律

奇函数±奇函数=奇函数

偶函数±偶函数=偶函数

奇函数×奇函数=偶函数

偶函数×偶函数=偶函数

本文到此结束,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!